The Neuro-QoL® Utility (NQU) Scoring System

Barry Dewitt, PhD

Carnegie Mellon University

June 5th, 2019
Financial support from Biogen
Key research personnel

- Louis Matza (PI, Evidera)
- Katie Stewart
- Dennis Revicki
- Janel Hanmer
- David Cella
- David Feeny
- Deborah Miller
- Glenn Phillips
Health-related quality of life (HRQL)

- HRQL is multidimensional: physical functioning, cognitive functioning, depression, fatigue, dexterity...
 - Condition-specific
 - Generic

Figure: Wilson & Cleary (1995).
Health-related quality of life (HRQL)

- HRQL is multidimensional: physical functioning, cognitive functioning, depression, fatigue, dexterity...
 - Condition-specific
 - Generic

Figure: Wilson & Cleary (1995).
Health-related quality of life (HRQL)

- HRQL is multidimensional: physical functioning, cognitive functioning, depression, fatigue, dexterity...
 - Condition-specific
 - Generic

Figure: Wilson & Cleary (1995).
Utility-based HRQL

We will be focusing on utility-based HRQL measures.

- Utility captures preferences for health (usually the public’s preferences).
- Summarizes the value of a state of health by a single number, allowing the comparison of all states of health.
- Useful for many applications
 - Economic analyses (e.g., QALYs, cost-effectiveness analysis)
 - Population health
Utility-based HRQL

We will be focusing on utility-based HRQL measures.

- Utility captures preferences for health (usually the public’s preferences).
 - Summarizes the value of a state of health by a single number, allowing the comparison of all states of health.
 - Useful for many applications
 - Economic analyses (e.g., QALYs, cost-effectiveness analysis)
 - Population health
We will be focusing on **utility-based HRQL measures**.

- Utility captures preferences for health (usually the public’s preferences).
- Summarizes the value of a state of health by a single number, allowing the comparison of all states of health.
- Useful for many applications
 - Economic analyses (e.g., QALYs, cost-effectiveness analysis)
 - Population health
We will be focusing on utility-based HRQL measures.

- Utility captures preferences for health (usually the public’s preferences).
- Summarizes the value of a state of health by a single number, allowing the comparison of all states of health.
- Useful for many applications
 - Economic analyses (e.g., QALYs, cost-effectiveness analysis)
 - Population health
Utility-based HRQL measures.

- Utility captures preferences for health (usually the public’s preferences).
- Summarizes the value of a state of health by a single number, allowing the comparison of all states of health.
- Useful for many applications
 - Economic analyses (e.g., QALYs, cost-effectiveness analysis)
 - Population health
Utility-based HRQL

We will be focusing on utility-based HRQL measures.

- Utility captures preferences for health (usually the public’s preferences).
- Summarizes the value of a state of health by a single number, allowing the comparison of all states of health.
- Useful for many applications
 - Economic analyses (e.g., QALYs, cost-effectiveness analysis)
 - Population health
Summary of a utility-based HRQL measure

- "Rarely get enough sleep"
- "Never in distressing pain"

Sleep poorly 0 Sleep well

Worst pain 0 No pain

-1.0 1.2
Summary of a utility-based HRQL measure

- "Rarely get enough sleep"
 - Sleep poorly: 0
 - Sleep well: 1.0
 - (-1.0, 1.2, cognition, physical functioning, ...)

- "Never in distressing pain"
 - Worst pain: 0
 - No pain: 1.2
Summary of a utility-based HRQL measure

Neuro-QoL Utility Score

Background
Overview
Domain selection
Survey and sample
Scoring function
Validation

“Rarely get enough sleep”
Sleep poorly 0 Sleep well

“Never in distressing pain”
Worst pain 0 No pain

Worst utility
Best utility (i.e., the value of full health)

(-1.0_{sleep}, 1.2_{pain}, cognition, physical functioning, ...)

0 1
Summary of a utility-based HRQL measure

- “Rarely get enough sleep”
 - Sleep poorly: -1.0
 - Sleep well: 0

- “Never in distressing pain”
 - Worst pain: 1.2
 - No pain: 0

- Worst utility: 0
- Best utility (i.e., the value of full health): 1

... cognition, physical functioning, ...
Summary of a utility-based HRQL measure

<table>
<thead>
<tr>
<th>Domain</th>
<th>Survey and sample</th>
<th>Scoring function</th>
<th>Validation</th>
</tr>
</thead>
</table>

Neuro-QoL Utility Score

Barry Dewitt

Background

Overview

Domain selection

Survey and sample

Scoring function

Validation

“Rarely get enough sleep”

- Sleep poorly: 0
- Sleep well: -1.0

“Never in distressing pain”

- Worst pain: 0
- No pain: 1.2

...(cognition, physical functioning, ...)

Worst utility: 0

Best utility (i.e., the value of full health): 1
Summary of a utility-based HRQL measure

- **“Rarely get enough sleep”**
 - Sleep poorly
 - Sleep well
 - Scoring function: -1.0

- **“Never in distressing pain”**
 - Worst pain
 - No pain
 - Scoring function: 1.2

Worst utility: -1.0

Best utility (i.e., the value of full health): 1.2

Scoring function: $(-1.0_{sleep}, 1.2_{pain}, cognition, physical functioning, ...)$
Summary of a utility-based HRQL measure

"Rarely get enough sleep"

"Never in distressing pain"

-1.0 1.2

(-1.0_{sleep}, 1.2_{pain}, cognition, physical functioning, ...)

Worst utility 0 1 Best utility (i.e., the value of full health)
The **Neuro-QoL® Utility (NQU) Scoring System** is a utility-based HRQL measure that uses the Neuro-QoL to describe states of health.

It allows studies to collect patient-reported outcomes data through the Neuro-QoL and automatically have the capability to perform preference-based analyses without extra data collection.

Developed with a particular focus on multiple sclerosis.
The **Neuro-QoL® Utility (NQU) Scoring System** is a utility-based HRQL measure that uses the Neuro-QoL to describe states of health.

It allows studies to collect patient-reported outcomes data through the Neuro-QoL and automatically have the capability to perform preference-based analyses without extra data collection.

Developed with a particular focus on multiple sclerosis.
The **Neuro-QoL® Utility (NQU) Scoring System** is a utility-based HRQL measure that uses the Neuro-QoL to describe states of health.

It allows studies to collect patient-reported outcomes data through the Neuro-QoL and automatically have the capability to perform preference-based analyses without extra data collection.

Developed with a particular focus on multiple sclerosis.
Most utility-based HRQL measures describe health using classical test theory-based instruments. The NQU benefits from the psychometric advances of the Neuro-QoL.

The PROMIS®-Preference (PROPr) project produced a generic utility score for health states described by PROMIS domains.

The NQU project follows a similar methodology to PROPr.
Most utility-based HRQL measures describe health using classical test theory-based instruments. The NQU benefits from the psychometric advances of the Neuro-QoL.

The PROMIS®-Preference (PROPr) project produced a generic utility score for health states described by PROMIS domains.

The NQU project follows a similar methodology to PROPr.
Most utility-based HRQL measures describe health using classical test theory-based instruments. The NQU benefits from the psychometric advances of the Neuro-QoL.

The PROMIS®-Preference (PROPr) project produced a generic utility score for health states described by PROMIS domains.

The NQU project follows a similar methodology to PROPr.
Most utility-based HRQL measures describe health using classical test theory-based instruments. The NQU benefits from the psychometric advances of the Neuro-QoL.

The PROMIS®-Preference (PROPr) project produced a generic utility score for health states described by PROMIS domains.

The NQU project follows a similar methodology to PROPr.
NQU development: A bird’s-eye view

- Neuro-QoL domain selection
- Survey development, sample recruitment, and data collection
- Calculation of the scoring function
- Validation
NQU development: A bird’s-eye view

- **Neuro-QoL domain selection**
 - Survey development, sample recruitment, and data collection
 - Calculation of the scoring function
 - Validation
NQU development: A bird’s-eye view

- Neuro-QoL domain selection
- Survey development, sample recruitment, and data collection
 - Calculation of the scoring function
 - Validation
NQU development: A bird’s-eye view

- Neuro-QoL domain selection
- Survey development, sample recruitment, and data collection
- Calculation of the scoring function
- Validation
NQU development: A bird’s-eye view

- Neuro-QoL domain selection
- Survey development, sample recruitment, and data collection
- Calculation of the scoring function
- Validation
Six Neuro-QoL domains were selected:

- depression (*mood*)
- fatigue
- ability to participate in social roles and activities (*social roles*)
- cognitive function (*thinking*)
- upper extremity function (*upper limbs*)
- lower extremity function (*lower limbs*)
Six Neuro-QoL domains were selected:

- depression (mood)
- fatigue
- ability to participate in social roles and activities (social roles)
- cognitive function (thinking)
- upper extremity function (upper limbs)
- lower extremity function (lower limbs)
Six Neuro-QoL domains were selected:

- depression (*mood*)
- fatigue
- ability to participate in social roles and activities (*social roles*)
- cognitive function (*thinking*)
- upper extremity function (*upper limbs*)
- lower extremity function (*lower limbs*)
Six Neuro-QoL domains were selected:

- depression (*mood*)
- fatigue
- ability to participate in social roles and activities (*social roles*)
- cognitive function (*thinking*)
- upper extremity function (*upper limbs*)
- lower extremity function (*lower limbs*)
Six Neuro-QoL domains were selected:

- depression (*mood*)
- fatigue
- ability to participate in social roles and activities (*social roles*)
- cognitive function (*thinking*)
- upper extremity function (*upper limbs*)
- lower extremity function (*lower limbs*)
Six Neuro-QoL domains were selected:

- depression (*mood*)
- fatigue
- ability to participate in social roles and activities (*social roles*)
- cognitive function (*thinking*)
- upper extremity function (*upper limbs*)
- lower extremity function (*lower limbs*)
Six Neuro-QoL domains were selected:

- depression (*mood*)
- fatigue
- ability to participate in social roles and activities (*social roles*)
- cognitive function (*thinking*)
- upper extremity function (*upper limbs*)
- lower extremity function (*lower limbs*)
Six Neuro-QoL domains were selected:

- depression (mood)
- fatigue
- ability to participate in social roles and activities (social roles)
- cognitive function (thinking)
- upper extremity function (upper limbs)
- lower extremity function (lower limbs)
Survey development: Preference elicitation

<table>
<thead>
<tr>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mood</td>
<td>I sometimes feel unhappy. I rarely feel that nothing is interesting.</td>
</tr>
<tr>
<td>Fatigue</td>
<td>I never feel fatigued. I am never too tired to leave the house.</td>
</tr>
<tr>
<td>Social Roles and Activities</td>
<td>I can always keep up with my family responsibilities. I am always able to participate in leisure activities.</td>
</tr>
<tr>
<td>Thinking</td>
<td>I never have to read something several times to understand it. My thinking is never slow.</td>
</tr>
<tr>
<td>Upper Limbs</td>
<td>I am able to write with a pen or pencil without any difficulty. I am able to wash and dry my body without any difficulty.</td>
</tr>
<tr>
<td>Lower Limbs</td>
<td>I am able to go for a walk of at least 15 minutes without any difficulty. I am able to get on and off the toilet without any difficulty.</td>
</tr>
</tbody>
</table>
Sample recruitment and data collection

- In-person administration in the UK.
- Two groups: general population ($n = 203$) and MS patients ($n = 62$)
- Survey included:
 - Preference elicitation
 - Neuro-QoL
 - Legacy measures (EQ-5D, HUI)
 - PDDS (for MS group)
 - Clinical characteristics
 - Demographic characteristics
Sample recruitment and data collection

- **In-person administration in the UK.**
- Two groups: general population \((n = 203)\) and MS patients \((n = 62)\)
- Survey included:
 - Preference elicitations
 - Neuro-QoL
 - Legacy measures (EQ-5D, HUI)
 - PDDS (for MS group)
 - Clinical characteristics
 - Demographic characteristics
In-person administration in the UK.

Two groups: general population \((n = 203)\) and MS patients \((n = 62)\)

Survey included:

- Preference elicitations
- Neuro-QoL
- Legacy measures (EQ-5D, HUI)
- PDDS (for MS group)
- Clinical characteristics
- Demographic characteristics
In-person administration in the UK.

Two groups: general population \((n = 203)\) and MS patients \((n = 62)\)

Survey included:

- Preference elicitations
- Neuro-QoL
- Legacy measures (EQ-5D, HUI)
- PDDS (for MS group)
- Clinical characteristics
- Demographic characteristics
Sample recruitment and data collection

- In-person administration in the UK.
- Two groups: general population \((n = 203)\) and MS patients \((n = 62)\)
- Survey included:
 - Preference elicitations
 - Neuro-QoL
 - Legacy measures (EQ-5D, HUI)
 - PDDS (for MS group)
 - Clinical characteristics
 - Demographic characteristics
Sample recruitment and data collection

- In-person administration in the UK.
- Two groups: general population ($n = 203$) and MS patients ($n = 62$)
- Survey included:
 - Preference elicitions
 - Neuro-QoL
 - Legacy measures (EQ-5D, HUI)
 - PDDS (for MS group)
 - Clinical characteristics
 - Demographic characteristics
Sample recruitment and data collection

- In-person administration in the UK.
- Two groups: general population \((n = 203)\) and MS patients \((n = 62)\)
- Survey included:
 - Preference elicitation
 - Neuro-QoL
 - Legacy measures (EQ-5D, HUI)
 - PDDS (for MS group)
 - Clinical characteristics
 - Demographic characteristics
Sample recruitment and data collection

- In-person administration in the UK.
- Two groups: general population \((n = 203)\) and MS patients \((n = 62)\)
- Survey included:
 - Preference elicitations
 - Neuro-QoL
 - Legacy measures (EQ-5D, HUI)
 - PDDS (for MS group)
 - Clinical characteristics
 - Demographic characteristics
Sample recruitment and data collection

- In-person administration in the UK.
- Two groups: general population \((n = 203)\) and MS patients \((n = 62)\)
- Survey included:
 - Preference elicitation
 - Neuro-QoL
 - Legacy measures (EQ-5D, HUI)
 - PDDS (for MS group)
 - Clinical characteristics
 - Demographic characteristics
Sample recruitment and data collection

- In-person administration in the UK.
- Two groups: general population \((n = 203)\) and MS patients \((n = 62)\)
- Survey included:
 - Preference elicitations
 - Neuro-QoL
 - Legacy measures (EQ-5D, HUI)
 - PDDS (for MS group)
 - Clinical characteristics
 - Demographic characteristics
Health status: Describe health states as

\[\Theta = (\theta_{\text{mood}}, \theta_{\text{fatigue}}, \theta_{\text{social}}, \theta_{\text{thinking}}, \theta_{\text{upperlimb}}, \theta_{\text{lowerlimb}}), \]

where \(\theta_{\text{domain}} \) is a score on one of the chosen Neuro-QoL domains.

⇒ Attach a utility value \(u(\Theta) \) to \(\Theta \), for every possible \(\Theta \).
Utility-based HRQL in practice

Health status: Describe health states as

$$\Theta = (\theta_{mood}, \theta_{fatigue}, \theta_{social}, \theta_{thinking}, \theta_{upperlimb}, \theta_{lowerlimb})$$,

where $$\theta_{domain}$$ is a score on one of the chosen Neuro-QoL domains.

⇒ Attach a utility value $$u(\Theta)$$ to $$\Theta$$, for every possible $$\Theta$$.

Barry Dewitt

Neuro-QoL Utility Score

Background

Overview

Domain selection

Survey and sample

Scoring function

Validation
Health status: Describe health states as

\[\Theta = (\theta_{\text{mood}}, \theta_{\text{fatigue}}, \theta_{\text{social}}, \theta_{\text{thinking}}, \theta_{\text{upperlimb}}, \theta_{\text{lowerlimb}}), \]

where \(\theta_{\text{domain}} \) is a score on one of the chosen Neuro-QoL domains.

\[\Rightarrow \] Attach a utility value \(u(\Theta) \) to \(\Theta \), for every possible \(\Theta \).
Single-attribute utility functions
The NQU scoring function is defined via a multiplicative model:

\[
NQU(\Theta) = 1 - \frac{C}{C} \left[\prod_{d \in \text{domains}} (1 + C \cdot c_d (1 - u_d (\theta_d))) - 1 \right],
\]

where

\[
\Theta = (\theta_{\text{mood}}, \theta_{\text{fatigue}}, \theta_{\text{social}}, \theta_{\text{thinking}}, \theta_{\text{upperlimb}}, \theta_{\text{lowerlimb}})
\]

is a health state formed from Neuro-QoL measurements, and \(c, C, c_d\) are constants.
Some highlights of the validation analyses

- Mean NQU score of the general population sample is 0.94 (on a 0-1 scale). Mean NQU score of the MS sample is 0.82. Variation is small enough that the difference is significant ($p < 0.01$).
- Positively correlated (≈ 0.6) with generic legacy measures (EQ-5D and HUI) in the MS sample.
 - In the general population sample, the EQ-5D and HUI were more highly correlated than either measure’s correlation with the NQU.
 - NQU provides different information than generic measures.
- Lower PDDS scores \Rightarrow higher NQU scores
Some highlights of the validation analyses

- Mean NQU score of the general population sample is 0.94 (on a 0-1 scale). Mean NQU score of the MS sample is 0.82. Variation is small enough that the difference is significant ($p < 0.01$).
- Positively correlated (≈ 0.6) with generic legacy measures (EQ-5D and HUI) in the MS sample.
 - In the general population sample, the EQ-5D and HUI were more highly correlated than either measure’s correlation with the NQU.
 - NQU provides different information than generic measures
- Lower PDDS scores \Rightarrow higher NQU scores
Some highlights of the validation analyses

- Mean NQU score of the general population sample is 0.94 (on a 0-1 scale). Mean NQU score of the MS sample is 0.82. Variation is small enough that the difference is significant ($p < 0.01$).
- Positively correlated (≈ 0.6) with generic legacy measures (EQ-5D and HUI) in the MS sample.
 - In the general population sample, the EQ-5D and HUI were more highly correlated than either measure’s correlation with the NQU.
 - NQU provides different information than generic measures.
- Lower PDDS scores \Rightarrow higher NQU scores
Some highlights of the validation analyses

- Mean NQU score of the general population sample is 0.94 (on a 0-1 scale). Mean NQU score of the MS sample is 0.82. Variation is small enough that the difference is significant ($p < 0.01$).
- Positively correlated (≈ 0.6) with generic legacy measures (EQ-5D and HUI) in the MS sample.
 - In the general population sample, the EQ-5D and HUI were more highly correlated than either measure’s correlation with the NQU.
- NQU provides different information than generic measures.
- Lower PDDS scores \Rightarrow higher NQU scores.
Some highlights of the validation analyses

- Mean NQU score of the general population sample is 0.94 (on a 0-1 scale). Mean NQU score of the MS sample is 0.82. Variation is small enough that the difference is significant ($p < 0.01$).

- Positively correlated (≈ 0.6) with generic legacy measures (EQ-5D and HUI) in the MS sample.
 - In the general population sample, the EQ-5D and HUI were more highly correlated than either measure’s correlation with the NQU.
 - NQU provides different information than generic measures

- Lower PDDS scores \Rightarrow higher NQU scores
Some highlights of the validation analyses

- Mean NQU score of the general population sample is 0.94 (on a 0-1 scale). Mean NQU score of the MS sample is 0.82. Variation is small enough that the difference is significant ($p < 0.01$).
- Positively correlated (≈ 0.6) with generic legacy measures (EQ-5D and HUI) in the MS sample.
 - In the general population sample, the EQ-5D and HUI were more highly correlated than either measure’s correlation with the NQU.
 - NQU provides different information than generic measures
- Lower PDDS scores \Rightarrow higher NQU scores
A summary score for 6 domains of the Neuro-QoL will soon be available, allowing anyone collecting Neuro-QoL data to undertake preference-based analyses, such as comparative effectiveness analyses.

Barry Dewitt
Department of Engineering & Public Policy
Carnegie Mellon University
email: barrydewitt@cmu.edu
Preference elicitation: What’s your utility for a given health state?

The Standard Gamble (SG)

Choice A

- **Worst Health**
 - Chance 60%
- **Best Health**
 - Chance 40%

Choice B

- **Middle Health**
 - Guaranteed
Example health states

Perfect Health

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mood</td>
<td>I never feel unhappy. I never feel that nothing is interesting.</td>
</tr>
<tr>
<td>Fatigue</td>
<td>I never feel fatigued. I am never too tired to leave the house.</td>
</tr>
<tr>
<td>Social Roles and Activities</td>
<td>I can always keep up with my family responsibilities. I am always able to participate in leisure activities.</td>
</tr>
<tr>
<td>Thinking</td>
<td>I never have to read something several times to understand it. My thinking is never slow.</td>
</tr>
<tr>
<td>Upper Limbs</td>
<td>I am able to write with a pen or pencil without any difficulty. I am able to wash and dry my body without any difficulty.</td>
</tr>
<tr>
<td>Lower Limbs</td>
<td>I am able to go for a walk of at least 15 minutes without any difficulty. I am able to get on and off the toilet without any difficulty.</td>
</tr>
</tbody>
</table>
Example Corner State (Fatigue)

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mood</td>
<td>I never feel unhappy. I never feel that nothing is interesting.</td>
</tr>
<tr>
<td>Fatigue</td>
<td>I always feel fatigued. I am always too tired to leave the house.</td>
</tr>
<tr>
<td>Social Roles and Activities</td>
<td>I can always keep up with my family responsibilities. I am always able to participate in leisure activities</td>
</tr>
<tr>
<td>Thinking</td>
<td>I never have to read something several times to understand it. My thinking is never slow.</td>
</tr>
<tr>
<td>Upper Limbs</td>
<td>I am able to write with a pen or pencil without any difficulty. I am able to wash and dry my body without any difficulty.</td>
</tr>
<tr>
<td>Lower Limbs</td>
<td>I am able to go for a walk of at least 15 minutes without any difficulty. I am able to get on and off the toilet without any difficulty.</td>
</tr>
</tbody>
</table>
Example Marker State (Moderate)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mood</td>
<td>I sometimes feel unhappy.</td>
</tr>
<tr>
<td></td>
<td>I rarely feel that nothing is interesting.</td>
</tr>
<tr>
<td>Fatigue</td>
<td>I sometimes feel fatigued.</td>
</tr>
<tr>
<td></td>
<td>I am rarely too tired to leave the house.</td>
</tr>
<tr>
<td>Social Roles and Activities</td>
<td>I can sometimes keep up with my family responsibilities.</td>
</tr>
<tr>
<td></td>
<td>I am sometimes able to participate in leisure activities.</td>
</tr>
<tr>
<td>Thinking</td>
<td>I sometimes have to read something several times to understand it.</td>
</tr>
<tr>
<td></td>
<td>My thinking is often slow.</td>
</tr>
<tr>
<td>Upper Limbs</td>
<td>I am able to write with a pen or pencil with some difficulty.</td>
</tr>
<tr>
<td></td>
<td>I am able to wash and dry my body with a little difficulty.</td>
</tr>
<tr>
<td>Lower Limbs</td>
<td>I am able to go for a walk of at least 15 minutes with a little difficulty.</td>
</tr>
<tr>
<td></td>
<td>I am able to get on and off the toilet with some difficulty.</td>
</tr>
</tbody>
</table>